假设你参加一个电视游戏节目,节目现场有三扇门,其中一扇门后面是一辆车,另外两扇门后面则是山羊。主持人让你选择其中的一扇门。不妨假设你选择了一号门吧。主持人故意打开了另外一扇门,比如说三号门,让你看见三号门的后面是山羊。然后主持人问你,“你想改变你的选择,换成二号门吗?”这时候,你会怎么做?
这个游戏最早出现在美国的电视游戏节目《Let’s make a deal》中。
1975 年,史蒂夫·塞尔文(Steve Selvin)教授在《美国统计学家》(American Statistician)上发表文章,把这个问题称为“蒙提霍尔问题”(Monty Hall Problem),因为那个节目主持人就叫蒙提霍尔(Monty Hall)。
玛丽莲·沃斯·莎凡特 (Marilyn vos Savant),吉尼斯世界记录认定的最高 IQ 人类,在《Parade》杂志上开了一个名叫“问问玛丽莲”(Ask Marilyn)的专栏,专门回答读者各式各样的问题。
1990 年,一个叫 Craig F. Whitaker 的读者给这个专栏寄去这个问题,玛丽莲是这样解答的:“坚持选一号门赢的概率是 1/3,但换成二号门赢的概率是 2/3,因此你应该换一扇门。
设想下面的情况,有 100 万扇门,你选了一号门之后,知道内幕的主持人打开了除了二号门之外所有其它的门,你必然会果断地改变选择,是不是?”这个解答发布后,引起了巨大的争议,因为这大大违反了人们的直觉。
甚至有不少大学博士去信“纠正”她的错误,理由是:主持人开了一扇门之后,剩下一辆车和一只羊,概率显然变成了 1/2 。他们督促玛丽莲“承认错误”,有人甚至表明自己“为美国的未来担忧”,这些记录至今还留在 玛丽莲的网站 上。大家不妨去参观一下,看看有多少 PhD 栽了跟头。