用户工具

站点工具


python-files:dbf

Python 读取DBF/FPT 文件

DBF/FPT是 FoxPro 数据库存储文件的格式,虽然现在 FoxPro 已经不用了,但是有些情况下我们需要读取DBF/FPT数据库文件。这里整理了用Python读取DBF/FPT文件相关 Python 模块。

FPT 文件格式

FPT文件是FoxPro存储备注信息的文件。

The file format is used by Fox Pro 2.x and later The size of the header is 512 bytes

           _______________________  _______
00h /   0 | Number of next        |  ^
00h /   1 | available block       |  |
00h /   2 | for appending data    | Header
00h /   3 | (binary)            *1|  |
          |-----------------------|  |
00h /   4 | ( Reserved )          |  |
00h /   5 |                       |  |
          |-----------------------|  |
00h /   6 | Size of blocks N    *1|  |
00h /   7 |                     *2|  |
          |-----------------------|  |
00h /   8 | ( Reserved )          |  |
          |                       |  |
          |                       |  |
          | (i.e. garbage)        |  |
          :                       :  |
          :                       :  |
00h /  511|                       |  |
          |=======================| _v_____
00h /    0|                       |  ^                 Used block
          |                       |  |           __  |=======================|
          |                       |  |          /   0| Record type         *3|
          :                       :  |         /    1|                     *1|
          :                       :  |        /     2|                       |
          |                       |  |       /      3|                       |
00h /    N|                       |  |      /        |-----------------------|
          |=======================| _|_____/        4| Length of memo field  |
00h /    0|                       |  |              5|                     *1|
          :                       :  |              6|                       |
          :                       :  |              7|                       |
          |                       |  |               |-----------------------|
00h /    N|                       | _|_____         8| Memo data             |
          |=======================|  |     \         :                       :
         0|                       |  |      \       N|                       |
          |                       |  |       \_____  |=======================|
          |                       |  |
          :                       :  |
00h /    N|                       | _v_____
          |=======================|
  1. Big-endian. Binary value with high byte first.
  2. Size of blocks in memo file (SET BLOCKSIZE). Default is 512 bytes.
  3. Record type
Value  	Description
00h 	Picture. This normally indicates that file is produced on a MacIntosh, since pictures on the DOS/Windows platform are "objects".
01h 	Memo
02h 	Object

A memo field can be longer than the 512 byte block. It simply continues through the next block. The field is logically terminated by two End-of-file marks in the field. The reminder of the block is unused.

Python DBF模块

DBF.PY

"""
This is a DBF reader which reads Visual Fox Pro DBF format with Memo field.
 
Usage:
    rec = readDbf('test.dbf')
    for line in rec:
        print line['name']
 
@author Yusdi Santoso
@date 13/07/2007
"""
import struct
import os, os.path
import sys
import csv
import tempfile
import ConfigParser
 
class Dbase:
    def __init__(self):
        self.fdb = None
        self.fmemo = None
        self.db_data = None
        self.memo_data = None
        self.fields = None
        self.num_records = 0
        self.header = None
        self.memo_file = ''
        self.memo_header = None
        self.memo_block_size = 0
        self.memo_header_len = 0
 
    def _drop_after_NULL(self, txt):
        for i in range(0, len(txt)):
            if ord(struct.unpack('c', txt[i])[0])==0:
                return txt[:i]
        return txt 
 
    def _reverse_endian(self, num):
        if not len(num):
            return 0
        val = struct.unpack('<L', num)
        val = struct.pack('>L', val[0])
        val = struct.unpack('>L', val)
        return val[0]
 
    def _assign_ids(self, lst, ids):
        result = {}
        idx = 0
        for item in lst:
            id = ids[idx]
            result[id] = item
            idx += 1
        return result
 
    def open(self, db_name):
        filesize = os.path.getsize(db_name)
        if filesize <= 68:
            raise IOError, 'The file is not large enough to be a dbf file'
 
        self.fdb = open(db_name, 'rb')
 
        self.memo_file = ''
        if os.path.isfile(db_name[0:-1] + 't'):
            self.memo_file = db_name[0:-1] + 't'
        elif os.path.isfile(db_name[0:-3] + 'fpt'):
            self.memo_file = db_name[0:-3] + 'fpt'
 
        if self.memo_file:    
            #Read memo file
            self.fmemo = open(self.memo_file, 'rb')
            self.memo_data = self.fmemo.read()
            self.memo_header = self._assign_ids(struct.unpack('>6x1H', self.memo_data[:8]), ['Block size'])
            block_size = self.memo_header['Block size']
            if not block_size:
                block_size = 512
            self.memo_block_size = block_size
            self.memo_header_len = block_size
            memo_size = os.path.getsize(self.memo_file)
 
        #Start reading data file
        data = self.fdb.read(32)
        self.header = self._assign_ids(struct.unpack('<B 3B L 2H 20x', data), ['id', 'Year', 'Month', 'Day', '# of Records', 'Header Size', 'Record Size'])
        self.header['id'] = hex(self.header['id'])
 
        self.num_records = self.header['# of Records']
        data = self.fdb.read(self.header['Header Size']-34)
        self.fields = {}
        x = 0
        header_pattern = '<11s c 4x B B 14x'
        ids = ['Field Name', 'Field Type', 'Field Length', 'Field Precision']
        pattern_len = 32
        for offset in range(0, len(data), 32):
            if ord(data[offset])==0x0d:
                break
            x += 1
            data_subset = data[offset: offset+pattern_len]
            if len(data_subset) < pattern_len:
                data_subset += ' '*(pattern_len-len(data_subset))
            self.fields[x] = self._assign_ids(struct.unpack(header_pattern, data_subset), ids)
            self.fields[x]['Field Name'] = self._drop_after_NULL(self.fields[x]['Field Name'])
 
        self.fdb.read(3)
        if self.header['# of Records']:
            data_size = (self.header['# of Records'] * self.header['Record Size']) - 1
            self.db_data = self.fdb.read(data_size)
        else:
            self.db_data = ''
        self.row_format = '<'
        self.row_ids = []
        self.row_len = 0
        for key in self.fields:
            field = self.fields[key]
            self.row_format += '%ds ' % (field['Field Length'])
            self.row_ids.append(field['Field Name'])
            self.row_len += field['Field Length']
 
    def close(self):
        if self.fdb:
            self.fdb.close()
        if self.fmemo:
            self.fmemo.close()
 
    def get_numrecords(self):
        return self.num_records
 
    def get_record_with_names(self, rec_no):
        """
        This function accept record number from 0 to N-1
        """
        if rec_no < 0 or rec_no > self.num_records:
            raise Exception, 'Unable to extract data outside the range' 
 
        offset = self.header['Record Size'] * rec_no
        data = self.db_data[offset:offset+self.row_len]
        record = self._assign_ids(struct.unpack(self.row_format, data), self.row_ids)
 
        if self.memo_file:
            for key in self.fields:
                field = self.fields[key]
                f_type = field['Field Type']
                f_name = field['Field Name']
                c_data = record[f_name]
 
                if f_type=='M' or f_type=='G' or f_type=='B' or f_type=='P':
                    c_data = self._reverse_endian(c_data)
                    if c_data:
                        record[f_name] = self.read_memo(c_data-1).strip()
                else:
                    record[f_name] = c_data.strip()
        return record
 
    def read_memo_record(self, num, in_length):
        """
        Read the record of given number. The second parameter is the length of
        the record to read. It can be undefined, meaning read the whole record,
        and it can be negative, meaning at most the length
        """
        if in_length < 0:
            in_length = -self.memo_block_size
 
        offset = self.memo_header_len + num * self.memo_block_size
        self.fmemo.seek(offset)
        if in_length<0:
            in_length = -in_length
        if in_length==0:
            return ''
        return self.fmemo.read(in_length)    
 
    def read_memo(self, num):
        result = ''
        buffer = self.read_memo_record(num, -1)
        if len(buffer)<=0:
            return ''
        length = struct.unpack('>L', buffer[4:4+4])[0] + 8
 
        block_size = self.memo_block_size
        if length < block_size:
            return buffer[8:length]
        rest_length = length - block_size
        rest_data = self.read_memo_record(num+1, rest_length)
        if len(rest_data)<=0:
            return ''
        return buffer[8:] + rest_data
 
def readDbf(filename):
    """
    Read the DBF file specified by the filename and 
    return the records as a list of dictionary.
    @param filename File name of the DBF
    @return List of rows
    """
    db = Dbase()
    db.open(filename)
    num = db.get_numrecords()
    rec = []
    for i in range(0, num):
        record = db.get_record_with_names(i)
        rec.append(record)    
    db.close()
    return  rec
 
if __name__=='__main__':
    rec = readDbf('dbf/sptable.dbf')
    for line in rec:
        print '%s %s' % (line['GENUS'].strip(), line['SPECIES'].strip())

dbfpy

python-files/dbf.txt · 最后更改: 2010/08/01 12:54 (外部编辑)